让军事智能化步入科学发展轨道

来源:网络整理 作者:http://www.aleka-ad. 发布时间:2019-05-16 07:41

  现代人工智能之所以取得技术上的突破,主要得益于2006年辛顿提出的深度学习方法。像其他任何算法一样,深度学习也有其不足,主要表现在:适用场景限制多、泛化能力差、数据量要求高等。正是由于深度学习方法的局限性,现代人工智能只是大数据推动的初级智能,属于限制领域人工智能,也称弱人工智能。加快军事智能化发展,应立足“初级智能”这个现实,处理好人工智能和人类智能的关系,准确定位,既要看到人工智能的“能”,更应看到人工智能还有许多“不能”,科学选择发展路径,理性确定发展目标。

  目前,人工智能技术正加速向军事领域渗透,军事智能化既面临千载难逢的发展机遇,也面临前所未有的挑战。如何加强风险研究和预判,防范重大风险,已经客观而现实地摆在我们面前。当前,尤其应该厘清人工智能发展脉络,把握人工智能发展规律,妥善处理好基础研究与应用研究、人工智能与人类智能、面临机遇与风险挑战的关系,科学选择发展路径,做好安全风险管控,推动军事智能化科学稳步发展。

  认清现代人工智能在军事指挥控制决策领域应用的技术瓶颈。“阿尔法狗”战胜人类后,再一次激发了人们对人工智能的热情,但军事对抗和棋类对弈最本质的不同是作战行动的不确定性,这些不确定性主要来自信息不完全、情报不一致、度量不准确等,它代表了军事智能化所要面对的真实环境。克劳塞维茨说过,战争是不确定性的王国。对于这些不确定性,不可能用确定性的假设来解决。目前,人工智能系统虽然是基于海量信息或知识的系统,但这些信息或知识仍局限在特定区域范围内,且缺乏对信息或知识的常识应用和融会贯通能力,因而无法解决作战过程中所面临的诸多不确定性问题。一旦问题超出系统约束,系统决策就可能出现失误甚至完全错误,加上战争谋略、欺骗、示假等因素的综合影响,人工智能走进军事指挥控制决策领域仍然面临不少难题。

  算法风险。作为人工智能的主流算法,深度学习本身是一个复杂系统,随着算法层级的增多,对这个生成和反馈数据的“黑盒子”里为什么能够给出有效输出、何时能够给出有效输出?算法专家也无法用逆向工程来分析并给出答案,可能在不知不觉中失去了发现错误、纠正错误的机会。美军F-35战机控制系统的智能化程度非常高,拥有几千万条代码,最近几年暴露出来的200多个问题几乎都与其智能软件的算法高度关联。任何一个问题的出现,不但影响战机的作战性能,甚至连安全起降都成问题。国际人工智能协会主席迪特里奇在前年发表的主席报告中,针对人工智能技术缺少稳健性,提出了“稳健人工智能”的发展目标。

  着眼人工智能引领新一轮产业变革的趋势,处理好机遇与挑战的关系

  充分挖掘基础研究的集成优势。人工智能是一个多学科、高综合的行业,我们在突出理论创新、技术创新和体制创新的同时,应注重基础研究的集成和运用。“阿尔法狗”2016年横空出世,引起世人震惊,但其基础框架即“蒙特卡洛树搜索”算法及卷积神经网络均成形于20世纪,其引入的强化学习也发展了数十年,通过结构重组和集成,使系统功能出现“涌现”。最近,美国知名人工智能专家安德鲁·穆尔在谈到人工智能发展方向时认为,人工智能的研究或将转向,重点应该致力于现有基础理论成果的运用和转化。

  原标题:让军事智能化步入科学发展轨道   

  投向风险。基础研究是应用研究的源泉和基础,应用研究是基础研究的延伸和拓展,两者相互联系,相互交错,协调好两者的关系,对推进军事智能化十分关键。但长期以来,由于人工智能技术具有高门槛的特点,使纯粹基础研究的学术价值和应用前景非一般人所能洞察,也很难进行评判和衡量,这就给投资决策带来了较大风险。近几十年,人工智能原创性理论突破多在国外,如何克服基础研究这块“短板”,实现基础研究和应用研究两者之间的平衡,对于我们推进军事智能化发展是一个不容忽视的挑战。

  把握人工智能发展量变质变规律,处理好基础研究与应用研究的关系

  从1956年美国达特茅斯会议诞生以来,人工智能经历了推理期、知识期、学习期三次高潮和两次低谷,逐渐从“不能用”“不好用”发展到“可以用”的技术拐点,遵循了事物发展从量变到质变的客观规律。现代人工智能之所以发展到目前技术拐点,并不是平地冒出来的,而是多年基础研究的积累和突破。厚积多年,一朝薄发,在严谨的科学领域,所谓的“弯道超车”是不太现实的。推进军事智能化发展,首先就是要深刻把握人工智能发展量变质变规律,妥善处理好基础研究与应用研究之间的关系。